Arora's PTAS for Euclidean TSP

Andreas Galanis

April 30, 2009

Andreas Galanis Arora's PTAS for Euclidean TSP

Table of contents

1 Basics

- Bounding box
- Dissect!
- Portals & well behaved tours

2 DP

- Valid Visits
- The algorithm

3 Bypassing losses

- Counterexample
- Randomize!
- Losses Revisited

Introduction

- Traveling Salesman Problem NP-complete
 - Hard to approximate.
- Metric TSP
 - Edge costs satisfy triangle inequality.
 - Factor 2 approximation algorithm in $O(m + n \log n)$.
 - Factor 3/2 approximation algorithm in $O(n^3)$.
- Euclidean TSP
 - Special case of Metric TSP.
 - Euclidean distance as cost function.
- Objective: Present a PTAS for Euclidean TSP.

Instance I

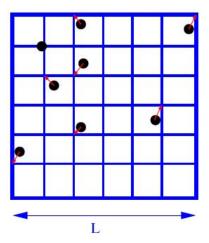
- Consider *n* points in \mathbb{R}^d .
- 2 The graph is complete.
- Euclidean distance dist $(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{d} (x_i y_i)^2\right)^{1/2}$.
- We consider the case d = 2, i.e. *n* points in the plane.
 - Most of it applies to the general case with slight modifications.

Transform I to I'

- Consider the smallest square that encloses all *n* points.
 - At least two nodes are on opposite edges of the square.
 - $OPT \ge 2L$.
- Set the length of each edge of the square to $L = 4n^2$.
 - Just a scale factor, so optimal tour is invariant
- Consider n to be a power of 2, so L is a power of 2 also, i.e. L = 2^k.

• $k = 2 + 2 \log n = O(\log n)$.

• Relocate every node of G to the nearest gridpoint.



Solving I' is enough

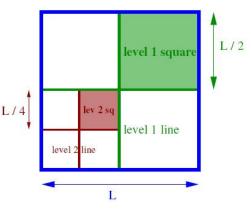
- Maximum distance from arbitrary point to the nearest grid point is $\sqrt{2}/2$.
- Absolute error per node is $\sqrt{2}$, i.e. total absolute error $n\sqrt{2}$.

•
$$\frac{|SOL - OPT|}{OPT} \le \frac{n\sqrt{2}}{2L} = \frac{n\sqrt{2}}{8n^2} = \frac{1}{4\sqrt{2}n}.$$

- Thus, given a $(1 + \epsilon)$ -solution to I', the corresponding solution to I is $(1 + \epsilon + \frac{1}{4\sqrt{2n}})$ -approximate.
 - For sufficiently large n we can adjust ϵ to compensate for the relative error.

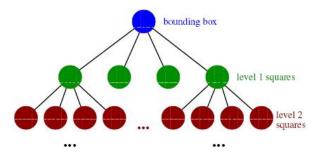
Basic dissection

- Partition the square with two lines into 4-subsquares.
- Recursively partition the resulting squares until unit squares are obtained.
- A level *i* square has size $L/2^i \times L/2^i$.



	Basics DP Bypassing losses	Bounding box Dissect! Portals & well behaved tours
Basic dissection		

• Basic dissection can be seen as a 4-ary tree with depth k.

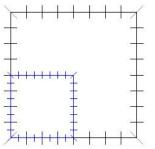


• Number of nodes $1 + 4 + \ldots + 4^k = O(4^{k+1}) = O(4^{2+2\log n}) = O(n^4).$

Basics	Bounding box Dissect!
Bypassing losses	Portals & well behaved tours

Portals

- Restrict the tour to intersect the level lines at certain points (*portals*).
- Each square has one portal for each corner and m-1 portals for each edge, i.e. all in all 4m portals for each square.

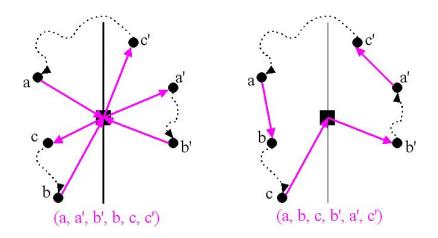


- Choose *m* a power of 2 in the interval $\left[\frac{k}{\epsilon}, \frac{2k}{\epsilon}\right]$.
- Level i portals are also level i + 1 portals.

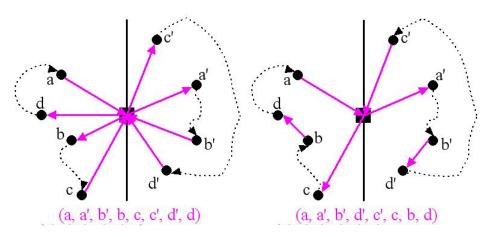
Well-behaved tours

- A tour is *well-behaved* if it is a tour on the *n* points and any subset of the portals.
- A tour is well-behaved with limited crossings if it is a well-behaved tour and visits each portal at most twice.
- Claim: Any well-behaved tour can be transformed to a well-behaved tour with limited crossings without increasing its length.
- Thus, it suffices (??) to search for well-behaved with limited crossings tours.
 - No guarantee though that a well-behaved tour is actully close enough to the optimum. In fact, there are counterexamples that prove the contrary.
 - This difficulty will be treated later.

Making crossings ≤ 2 : Odd number of crossings



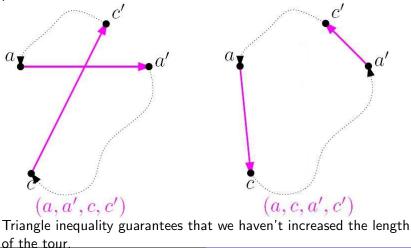
Making crossings ≤ 2 : Even number of crossings



Bounding box Dissect! Portals & well behaved tours

Eliminating an intersection

We further restrict the tour to not intersect itself apart possibly a portal.



We need to:

- Find an optimal well-behaved tour with limited crossings.
- Prove that this optimal tour is short enough.

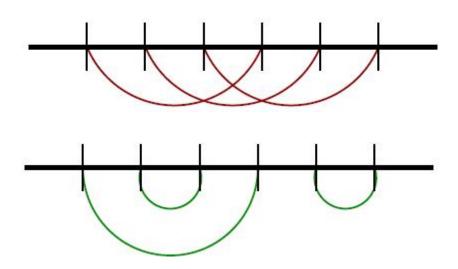
We will use dynamic programming to fulfill the first goal.

Dynamic Programming

- We look only for tours with limited crossings, i.e. each portal can be used 0, 1 or 2 times.
- 4*m* portals in total for each square, thus $3^{4m} = 2^{4m \log 3} = 2^{4k \log 3/\epsilon} = n^{O(1/\epsilon)}$ possibilities for each square.
- Once we have selected the portals, not every possible pairing is allowed because no self-intersection is allowed.

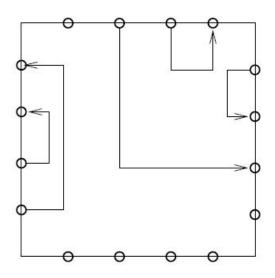
Basics DP Bypassing losses Valid Visits The algorith

Valid pairings



Valid Visits The algorithm

Valid pairings



- There is a bijection between valid pairings with 2r portals and balanced arrangement of 2r parentheses.
- (())()
- The latter is the *r*-th Catalan number, $C_r = \frac{1}{r+1} {2r \choose r} < 2^{2r}$.
- Each visit on the portals of a square uses at most 8*m* portals, thus the number of valid pairings is at most

$$2^{8m} = 2^{8k/\epsilon} = n^{O(1/\epsilon)}.$$

Putting it together

- $n^{O(1/\epsilon)}$ possibilities of portal usage.
- $n^{O(1/\epsilon)}$ valid pairings for each portal usage.
- Total number of valid visits : $n^{O(1/\epsilon)} \cdot n^{O(1/\epsilon)} = n^{O(1/\epsilon)}$.

Valid Visits The algorithm

Dynamic Programming

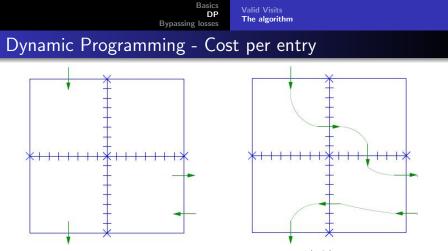
minimum	level 0		leve	el 1		
costs	square 1	square 1	square 2	square 3	square 4	
valid visit 1						
valid visit 2						
valid visit 3						
:						

 $\begin{aligned} \# \text{columns} &= \# \text{nodes in 4-ary tree} = O(n^4). \\ \# \text{rows} &= \# \text{valid visits} = n^{O(1/\epsilon)}. \\ \# \text{entries} &= n^{O(1/\epsilon)} \cdot n^{O(1/\epsilon)} = n^{O(1/\epsilon)}. \end{aligned}$

Dynamic Programming

minimum	level 0		leve	el 1		
costs	square 1	square 1	square 2	square 3	square 4	
valid visit 1						
valid visit 2						
valid visit 3						
:						

- Start at the leaves of the tree.
- Ouse the results of the four children squares to compute the visits of the corresponding parent square.



- 4m + 1 internal portals, thus 3^{4m+1} = n^{O(1/\epsilon)} possible portal usage.
- Using again Catalan numbers, we obtain at most $2^{8m+2} = n^{O(1/\epsilon)}$ valid pairings.
- In total, we have $n^{O(1/\epsilon)}$ configurations to consider.

Valid Visits The algorithm

Dynamic Programming - Cost per entry

minimum	level 0		leve	el 1		
costs	square 1	square 1	square 2	square 3	square 4	
valid visit 1						
valid visit 2						
valid visit 3						
:						

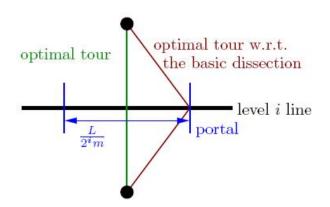
- Sum the corresponding lengths of the appropriate visits of the children squares and find the minimum.
- 2 Total cost = #entries $\cdot n^{O(1/\epsilon)} = n^{O(1/\epsilon)} \cdot n^{O(1/\epsilon)} = n^{O(1/\epsilon)}$.

	Basics DP Bypassing losses	Counterexample Randomize! Losses Revisited	
Losses			

- We have computed the optimal well-behaved tour. Is it short enough?
- NO!

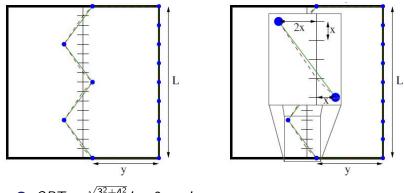
Basics Counterexample DP Randomize! Bypassing losses Losses Revisited

Why not?



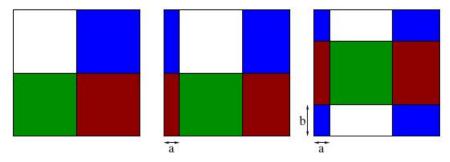
Basics Counterexample DP Randomize! Bypassing losses Losses Revisited

Counterexample



• $OPT = \frac{\sqrt{3^2+4^2}}{4}L + 2y + L.$ • $SOL = \frac{\sqrt{2}+\sqrt{2^2+3^2}}{4}L + 2y + L.$ • $\frac{OPT}{SOL} > 1.0015.$

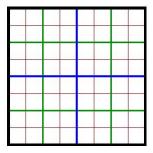
Choose randomly integers a, b such that $0 \le a, b < L$ and shift each vertical line x to $x + a \mod L$ and each horizontal line y to $y + b \mod L$.



This way any specific line has random level.

Basics	Counterexample
DP	Randomize!
Bypassing losses	Losses Revisited

Shifted dissection



- 2¹ level 1 lines, 2² level 2 lines, ..., 2^k level k lines.
 #lines=2^{k+1} 1.
- **③** Probability that a randomly chosen line has level *i* is

$$p(i) = \frac{2^{i}}{2^{k+1}-1} = \frac{2^{i}}{2L-2} \le \frac{2^{i}}{L}.$$

Expected value of indirection

Maximum indirection when a level i line is crossed is

$$x(i)=\frac{L}{2^im}$$

② Expected value of indirection when a random line is crossed is

$$E(X) = \sum_{i=1}^{k} p(i)x(i) \le \sum_{i=1}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} = \frac{k}{m} \le \epsilon$$

Expected value of total indirection

- In order to find the expected value of total indirection we need to bound the number of crossings.
- 2 Let τ an optimal tour and let $N(\tau)$ the total number of crossings (both vertical and horizontal). Then

$$N(au) \leq \sqrt{2} \cdot OPT$$

3 If Y is the total indirection

$$E(Y) = N(\tau) \cdot E(X) \leq \sqrt{2} \cdot OPT \cdot \epsilon$$

Markov inequality implies

$$\Pr[Y \ge 2\sqrt{2}\epsilon \cdot OPT] \le \frac{E(Y)}{2\sqrt{2}\epsilon \cdot OPT} \le \frac{1}{2}$$

Basics DP	Counterexample Randomize!
Bypassing losses	Losses Revisited

Error Bound

- From the preceding, the probability that the error bound exceeds $2\sqrt{2}\epsilon$ is less than 1/2. The $2\sqrt{2}$ constant can be tackled with a suitably chosen $\epsilon' (2\sqrt{2}\epsilon' = \epsilon)$.
- The algorithm can be derandomized by checking all the $O(L^2) = O(n^4)$ possibilities for *a*, *b*.

Counterexample Randomize! Losses Revisited

Proving $N(\tau) \leq \sqrt{2} \cdot OPT$

- Number of crossings equals the perimeter of the square (red line).
- $c^2 = a^2 + b^2$.
- $a^2 + b^2 \ge (a + b)^2/2$.
- $c\sqrt{2} \ge (a+b)$.
- Adding up we obtain the desired result.

