Arora's PTAS for Euclidean TSP

Andreas Galanis

April 30, 2009

Table of contents

(1) Basics

- Bounding box
- Dissect!
- Portals \& well behaved tours
(2) DP
- Valid Visits
- The algorithm
(3) Bypassing losses
- Counterexample
- Randomize!
- Losses Revisited

Introduction

- Traveling Salesman Problem NP-complete
- Hard to approximate.
- Metric TSP
- Edge costs satisfy triangle inequality.
- Factor 2 approximation algorithm in $O(m+n \log n)$.
- Factor 3/2 approximation algorithm in $O\left(n^{3}\right)$.
- Euclidean TSP
- Special case of Metric TSP.
- Euclidean distance as cost function.
- Objective: Present a PTAS for Euclidean TSP.

Instance I

(1) Consider n points in \mathbb{R}^{d}.
(2) The graph is complete.
(3) Euclidean distance $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\left(\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}$.
(9) We consider the case $d=2$, i.e. n points in the plane.

- Most of it applies to the general case with slight modifications.

Transform / to / ${ }^{\prime}$

- Consider the smallest square that encloses all n points.
- At least two nodes are on opposite edges of the square.
- $O P T \geq 2 L$.
- Set the length of each edge of the square to $L=4 n^{2}$.
- Just a scale factor, so optimal tour is invariant
- Consider n to be a power of 2 , so L is a power of 2 also, i.e. $L=2^{k}$.
- $k=2+2 \log n=O(\log n)$.
- Relocate every node of G to the

L nearest gridpoint.

Solving I^{\prime} is enough

- Maximum distance from arbitrary point to the nearest grid point is $\sqrt{2} / 2$.
- Absolute error per node is $\sqrt{2}$, i.e. total absolute error $n \sqrt{2}$.
- $\frac{|S O L-O P T|}{O P T} \leq \frac{n \sqrt{2}}{2 L}=\frac{n \sqrt{2}}{8 n^{2}}=\frac{1}{4 \sqrt{2} n}$.
- Thus, given a $(1+\epsilon)$-solution to I^{\prime}, the corresponding solution to I is $\left(1+\epsilon+\frac{1}{4 \sqrt{2} n}\right)$-approximate.
- For sufficiently large n we can adjust ϵ to compensate for the relative error.

Basic dissection

- Partition the square with two lines into 4-subsquares.
- Recursively partition the resulting squares until unit squares are obtained.
- A level i square has size $L / 2^{i} \times L / 2^{i}$.

Basic dissection

- Basic dissection can be seen as a 4-ary tree with depth k.

- Number of nodes
$1+4+\ldots+4^{k}=O\left(4^{k+1}\right)=O\left(4^{2+2 \log n}\right)=O\left(n^{4}\right)$.

Portals

- Restrict the tour to intersect the level lines at certain points (portals).
- Each square has one portal for each corner and $m-1$ portals for each edge, i.e. all in all $4 m$ portals for each square.

- Choose m a power of 2 in the interval $\left[\frac{k}{\epsilon}, \frac{2 k}{\epsilon}\right]$.
- Level i portals are also level $i+1$ portals.

Well-behaved tours

(1) A tour is well-behaved if it is a tour on the n points and any subset of the portals.
(2) A tour is well-behaved with limited crossings if it is a well-behaved tour and visits each portal at most twice.
(3) Claim: Any well-behaved tour can be transformed to a well-behaved tour with limited crossings without increasing its length.
(9) Thus, it suffices (??) to search for well-behaved with limited crossings tours.

- No guarantee though that a well-behaved tour is actully close enough to the optimum. In fact, there are counterexamples that prove the contrary.
- This difficulty will be treated later.

Bounding box

Making crossings ≤ 2 : Odd number of crossings

($\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{b}, \mathrm{c}, \mathrm{c}^{\prime}$)

(a, b, c, b', a', c')

Bounding box

Making crossings ≤ 2 : Even number of crossings

(a, $\left.\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{b}, \mathrm{c}, \mathrm{c}^{\prime}, \mathrm{d}^{\prime}, \mathrm{d}\right)$

(a, $\left.\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{d}^{\prime}, \mathrm{c}^{\prime}, \mathrm{c}, \mathrm{b}, \mathrm{d}\right)$

Eliminating an intersection

We further restrict the tour to not intersect itself apart possibly a portal.

Triangle inequality guarantees that we haven't increased the length of the tour.

New objectives

We need to:
(1) Find an optimal well-behaved tour with limited crossings.
(2) Prove that this optimal tour is short enough.

We will use dynamic programming to fulfill the first goal.

Dynamic Programming

- We look only for tours with limited crossings, i.e. each portal can be used 0, 1 or 2 times.
- $4 m$ portals in total for each square, thus
$3^{4 m}=2^{4 m \log 3}=2^{4 k \log 3 / \epsilon}=n^{O(1 / \epsilon)}$ possibilities for each square.
- Once we have selected the portals, not every possible pairing is allowed because no self-intersection is allowed.

Valid pairings

Valid pairings

Counting valid pairings

- There is a bijection between valid pairings with $2 r$ portals and balanced arrangement of $2 r$ parentheses.
- (())()

- The latter is the r-th Catalan number, $C_{r}=\frac{1}{r+1}\binom{2 r}{r}<2^{2 r}$.
- Each visit on the portals of a square uses at most $8 m$ portals, thus the number of valid pairings is at most

$$
2^{8 m}=2^{8 k / \epsilon}=n^{O(1 / \epsilon)} .
$$

Putting it together

- $n^{O(1 / \epsilon)}$ possibilities of portal usage.
- $n^{O(1 / \epsilon)}$ valid pairings for each portal usage.
- Total number of valid visits : $n^{O(1 / \epsilon)} \cdot n^{O(1 / \epsilon)}=n^{O(1 / \epsilon)}$.

Dynamic Programming

minimum costs	level 0	level 1				\ldots
	square 1	square 1	square 2	square 3	square 4	\ldots
valid visit 2						
valid visit 3						
\vdots						

$\#$ columns $=\#$ nodes in 4-ary tree $=O\left(n^{4}\right)$.
$\#$ rows $=\#$ valid visits $=n^{O(1 / \epsilon)}$.
\#entries $=n^{O(1 / \epsilon)} \cdot n^{O(1 / \epsilon)}=n^{O(1 / \epsilon)}$.

Dynamic Programming

minimum costs	level 0	level 1				\ldots
	square 1	square 1	square 2	square 3	square 4	\ldots
valid visit 1						
valid visit 2						
valid visit 3						
\vdots						

(1) Start at the leaves of the tree.
(2) Use the results of the four children squares to compute the visits of the corresponding parent square.

Dynamic Programming - Cost per entry

- $4 m+1$ internal portals, thus $3^{4 m+1}=n^{O(1 / \epsilon)}$ possible portal usage.
- Using again Catalan numbers, we obtain at most $2^{8 m+2}=n^{O(1 / \epsilon)}$ valid pairings.
- In total, we have $n^{O(1 / \epsilon)}$ configurations to consider.

Dynamic Programming - Cost per entry

minimum costs	level 0	level 1				\ldots
	square 1	square 1	square 2	square 3	square 4	\ldots
valid visit 1						
valid visit 2						
valid visit 3						
\vdots						

(1) Sum the corresponding lengths of the appropriate visits of the children squares and find the minimum.
(2) Total cost $=\#$ entries $\cdot n^{O(1 / \epsilon)}=n^{O(1 / \epsilon)} \cdot n^{O(1 / \epsilon)}=n^{O(1 / \epsilon)}$.

Losses

- We have computed the optimal well-behaved tour. Is it short enough?
- NO!

Why not?

Counterexample

(1) $O P T=\frac{\sqrt{3^{2}+4^{2}}}{4} L+2 y+L$.
(2) $S O L=\frac{\sqrt{2}+\sqrt{2^{2}+3^{2}}}{4} L+2 y+L$.
(3) $\frac{O P T}{S O L}>1.0015$.

Shifted dissection

Choose randomly integers a, b such that $0 \leq a, b<L$ and shift each vertical line x to $x+a \bmod L$ and each horizontal line y to $y+b \bmod L$.

This way any specific line has random level.

Shifted dissection

(1) 2^{1} level 1 lines, 2^{2} level 2 lines, $\ldots, 2^{k}$ level k lines.
(2) \#lines $=2^{k+1}-1$.
(3) Probability that a randomly chosen line has level i is

$$
p(i)=\frac{2^{i}}{2^{k+1}-1}=\frac{2^{i}}{2 L-2} \leq \frac{2^{i}}{L} .
$$

Expected value of indirection

(1) Maximum indirection when a level i line is crossed is

$$
x(i)=\frac{L}{2^{i} m}
$$

(2) Expected value of indirection when a random line is crossed is

$$
E(X)=\sum_{i=1}^{k} p(i) x(i) \leq \sum_{i=1}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i} m}=\frac{k}{m} \leq \epsilon
$$

Expected value of total indirection

(1) In order to find the expected value of total indirection we need to bound the number of crossings.
(2) Let τ an optimal tour and let $N(\tau)$ the total number of crossings (both vertical and horizontal). Then

$$
N(\tau) \leq \sqrt{2} \cdot O P T
$$

(3) If Y is the total indirection

$$
E(Y)=N(\tau) \cdot E(X) \leq \sqrt{2} \cdot O P T \cdot \epsilon
$$

(9) Markov inequality implies

$$
\operatorname{Pr}[Y \geq 2 \sqrt{2} \epsilon \cdot O P T] \leq \frac{E(Y)}{2 \sqrt{2} \epsilon \cdot O P T} \leq \frac{1}{2}
$$

Error Bound

(1) From the preceding, the probability that the error bound exceeds $2 \sqrt{2} \epsilon$ is less than $1 / 2$. The $2 \sqrt{2}$ constant can be tackled with a suitably chosen $\epsilon^{\prime}\left(2 \sqrt{2} \epsilon^{\prime}=\epsilon\right)$.
(2) The algorithm can be derandomized by checking all the $O\left(L^{2}\right)=O\left(n^{4}\right)$ possibilities for a, b.

Proving $N(\tau) \leq \sqrt{2} \cdot$ OPT

- Number of crossings equals the perimeter of the square (red line).
- $c^{2}=a^{2}+b^{2}$.
- $a^{2}+b^{2} \geq(a+b)^{2} / 2$.
- $c \sqrt{2} \geq(a+b)$.
- Adding up we obtain the desired result.

